Active TopicsActive Topics  Display List of Forum MembersMemberlist  CalendarCalendar  Search The ForumSearch  HelpHelp
  RegisterRegister  LoginLogin
 Discussions WorldEXAMS @ DISCUSSIONSWORLD.COMM TECH EXAMS - GATE, CET, ANNA UNIVERSITY EXAM ETC.




Mathematics Syllabus Topic: Mathematics Syllabus

Post Reply Post New Topic
Author Message
divyalaks
Senior Member
Senior Member
Avatar

Joined: 12Jun2009
Online Status: Offline
Posts: 1
Quote divyalaks Replybullet Topic: Mathematics Syllabus
    Posted: 29Oct2009 at 2:47pm
Smile
Mathematics Syllabus


Linear Algebra: Finite dimensional vector spaces; Linear transformations and their matrix representations, rank; systems of linear equations, eigen values and eigen vectors, minimal polynomial, Cayley-Hamilton Theroem, diagonalisation, Hermitian, Skew-Hermitian and unitary matrices; Finite dimensional inner product spaces, Gram-Schmidt orthonormalization process, self-adjoint operators.

Complex Analysis: Analytic functions, conformal mappings, bilinear transformations; complex integration: Cauchy's integral theorem and formula; Liouville's theorem, maximum modulus principle; Taylor and Laurent's series; residue theorem and applications for evaluating real integrals.

Real Analysis: Sequences and series of functions, uniform convergence, power series, Fourier series, functions of several variables, maxima, minima; Riemann integration, multiple integrals, line, surface and volume integrals, theorems of Green, Stokes and Gauss; metric spaces, completeness, Weierstrass approximation theorem, compactness; Lebesgue measure, measurable functions; Lebesgue integral, Fatou's lemma, dominated convergence theorem.

Ordinary Differential Equations: First order ordinary differential equations, existence and uniqueness theorems, systems of linear first order ordinary differential equations, linear ordinary differential equations of higher order with constant coefficients; linear second order ordinary differential equations with variable coefficients; method of Laplace transforms for solving ordinary differential equations, series solutions; Legendre and Bessel functions and their orthogonality.

Algebra: Normal subgroups and homomorphism theorems, automorphisms; Group actions, Sylow's theorems and their applications; Euclidean domains, Principle ideal domains and unique factorization domains. Prime ideals and maximal ideals in commutative rings; Fields, finite fields.

Functional Analysis: Banach spaces, Hahn-Banach extension theorem, open mapping and closed graph theorems, principle of uniform boundedness; Hilbert spaces, orthonormal bases, Riesz representation theorem, bounded linear operators.

Numerical Analysis: Numerical solution of algebraic and transcendental equations: bisection, secant method, Newton-Raphson method, fixed point iteration; interpolation: error of polynomial interpolation, Lagrange, Newton interpolations; numerical differentiation; numerical integration: Trapezoidal and Simpson rules, Gauss Legendre quadrature, method of undetermined parameters; least square polynomial approximation; numerical solution of systems of linear equations: direct methods (Gauss elimination, LU decomposition); iterative methods (Jacobi and Gauss-Seidel); matrix eigenvalue problems: power method, numerical solution of ordinary differential equations: initial value problems: Taylor series methods, Euler's method, Runge-Kutta methods.

Partial Differential Equations: Linear and quasilinear first order partial differential equations, method of characteristics; second order linear equations in two variables and their classification; Cauchy, Dirichlet and Neumann problems; solutions of Laplace, wave and diffusion equations in two variables; Fourier series and Fourier transform and Laplace transform methods of solutions for the above equations.

Mechanics: Virtual work, Lagrange's equations for holonomic systems, Hamiltonian equations.

Topology: Basic concepts of topology, product topology, connectedness, compactness, countability and separation axioms, Urysohn's Lemma.

Probability and Statistics: Probability space, conditional probability, Bayes theorem, independence, Random variables, joint and conditional distributions, standard probability distributions and their properties, expectation, conditional expectation, moments; Weak and strong law of large numbers, central limit theorem; Sampling distributions, UMVU estimators, maximum likelihood estimators, Testing of hypotheses, standard parametric tests based on normal, X2 , t, F - distributions; Linear regression; Interval estimation.

Linear programming: Linear programming problem and its formulation, convex sets and their properties, graphical method, basic feasible solution, simplex method, big-M and two phase methods; infeasible and unbounded LPP's, alternate optima; Dual problem and duality theorems, dual simplex method and its application in post optimality analysis; Balanced and unbalanced transportation problems, u -u method for solving transportation problems; Hungarian method for solving assignment problems.

Calculus of Variation and Integral Equations: Variation problems with fixed boundaries; sufficient conditions for extremum, linear integral equations of Fredholm and Volterra type, their iterative solutions.

IP IP Logged
BachtiarEffendy
Newbie
Newbie


Joined: 27Jul2013
Online Status: Offline
Posts: 1
Quote BachtiarEffendy Replybullet Posted: 18Nov2013 at 5:31pm
Wow! what a great information you have shared dear.
IP IP Logged
Post Reply Post New Topic
Printable version Printable version

Forum Jump
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot delete your posts in this forum
You cannot edit your posts in this forum
You cannot create polls in this forum
You cannot vote in polls in this forum

GET LATEST FRESHERS JOBS IN YOUR MAIL
GET LATEST FRESHERS JOBS IN YOUR MAIL:




This page was generated in 0.172 seconds.
Privacy Policy | Terms and Conditions

Our Portals : Job Interview Questions | Placement Papers Academic Tutorials | Free eBooks | Beyond Stats | City Details | Job Interview Questions | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Indian Free Ads | Jobs Assist | Job Interview Questions | One Stop FAQs | One Stop GATE | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | Software Testing | Web Hosting | Dedicated Server in India | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Testing Interview Questions | Free Online Exams | The Galz | Vyom | Vyom eBooks | Vyom International | Free Downloads | Vyoms | Vyom World | Clean Jokes